
Provisioning API

In this article

Section overview
Execution Logs tab

Section overview

The following section allows . configuring and monitoring of hooks for Provisioning API

Provisioning API provides a mechanism for real-time integration with 3rd party systems, including softswitches, gateways, and CRM systems. It calls pre-
defined handlers on an occurrence of specific events in the system. The handlers are allowed to modify data, forbid or the action or simply process allow
given event.

For detailed information about functionality, go to section of our User Guide.Provisioning API APIs

To configure handlers and check their call log, go to the Integration > Provisioning API.

 Tip

The full list of Provisioning API parameters matches with CoreAPI and they are available upon an individual request of your current clients.

Screenshot: Provisioning section

Column Name Description

ID Handler's identification number

Priority Priority of handlers execution

Name Handler's title

Event Description of the handler event

Handler Category of the handler that is used and location. There are two types of handlers that can be used:

 scripts, called via POST requests (used in most cases)HTTP
, called locally on the server (used in very specific cases)Local server scripts

The list of section functional is as follows:buttons/icons

Button/Icon Description

Allows creating a new handler

Identifies a status of a handlerdisabled

Identifies an enabled status of a handler

Identifies an status of a handlerarchived

Allows viewing tab for a respective handler details of a target handlers' performance Execution Logs

Allows deleting a handler from the system

https://docs.jerasoft.net/display/VCS318/ProvisioningAPI
https://docs.jerasoft.net/display/VCS318/APIs
https://docs.jerasoft.net/display/VCS318/CoreAPI

 Tip

For a quick switch between and statuses, click on a respective in the section. However, to change status, you enabled disabled status icon archived
need to do it from a handler edit form

Advanced Search
. Advanced Search drop-down menu, located in the top right corner of the section, is called to facilitate easy access to required information By clicking on a

downward red arrow icon, the following drop-down menu is displayed:

Screenshot: Advanced Search drop-down menu

Field Description

Event Select from a list of all possible handler events

Handler Type Indicate a type of handler:

script
HTTP

Status Choose a target status:

Enabled
Disabled
Archived

or leave this field blank. In this case, both and handlers will be displayed. This field is empty by defaultenabled disabled

Creating a New Handler
To start with provisioning, you need to create a handler manually. Click the button and specify respective parameters in the appeared pop-New Handler
up window:

Screenshot: Provisioning section/Handler adding form

Field Description

Name Specify a particular title for a handler

Event Specify a handler event from the following list:

Clients
create
update
delete
archive
custom fields update
balance became >=0
balance became <=0

Accounts
create
update
delete

Clients Packages
assign
activate
deactivate
renew

 close

Task Determine a type of handler and details:

- here you need to specify the path where the following script is script
located,
for example, user/local/vcs/script.py.

 - here specify the port and method, http://
for example: 120.0.0.1:5000/api.

Status Choose the state of the handler:

select it to make a handler active; - enabled
select it to unable a handler; - disabled

 - select it to archive a handler.archived

Priority Establish an order of handler performing.
: The handler with will precede all other handlers in order.Note 1 priority

 Attention

In , to prevent performance degradation and data inconsistency, affected by external side, event type has been removed from the seVCS 3.17.0 Before
ction.

a.
b.
c.
d.

 Best practice example

There is an example based on usage.http://handler

2. Open the and start creating a handler.Provisioning section

Specify the name, type, and status.
In field, select event from the drop-down list. the Event Clients Create
In field, indicate type and determine the port and method, for example, the Task http:// 120.0.0.1:5000/api.
Click .Apply

Find an example of the : http://handler below

from flask import Flask, request
import json
app = Flask(__name__)
@app.route("/api", methods=['GET', 'POST'])
def api():
 data = json.loads(request.data)
 return json.dumps(data)
if __name__ == "__main__":
 app.run()

 Attention

To put a handler into action, you need to the . To do so, click on the corresponding icon inrestart Cache Manager Task Scheduler section

Execution Logs tab

You can access the details about handler execution in this tab. For more details, check out a related article: . Execution Logs

 Warning

Please note, the Provisioning functionality is experimental and may be changed completely in future releases.

http://handler
https://docs.jerasoft.net/display/VCS318/Task+Scheduler
https://docs.jerasoft.net/display/VCS318/Execution+Logs

	Provisioning API

